Flow Control Back Pressure Regulator | Equilibar

Flow Control Using Equilibar Valves

Back Pressure Regulators in Flow Control

  • Equilibar schematic open loop flow control
As manufacturing processes become increasingly complex, the need for flow control solutions that can perform in demanding applications rises. Equilibar® direct-sealing diaphragm valves can be adapted to control flow rate in complex scenarios. Because Equilibar regulators offer the same advantages for flow control that they offer for pressure control, they are good for applications that cannot be solved by traditional methods. Some of the demanding applications may include:

  • Flow coefficient (Cv) ranges wider than traditional valves (>100:1)
  • Extremely low DP and extremely high DP
  • Two-phase, phase-change and supercritical states

How it Works

The Equilibar regulator operates in flow control using a pilot pressure controller and a flow meter in a control loop. A proportional-integral-derivative (PID) controller monitors the flow from a flow transmitter (FT) and adjusts the pilot pressure on the regulator to bring the flow under control. An electro pneumatic transducer (E/P) translates the electronic signal from the PID into a pressure signal for the pilot controller. Flow is decreased by raising the pilot pressure up to the media supply pressure. Flow is increased by lowering the pilot pressure below the media supply pressure.

Pressure and flow have an inverse relationship, so the control scheme will be set up differently for each situation. In flow control operations, the PID controller must be used in direct mode instead of the more common inverse mode, because pressure must be increased in response to an increase in flow (see graph at right).

Back Pressure Regulators in Flow Control

Traditional flow control schemes use variable orifice control valves in conjunction with flow transmitters and a closed-loop PID controller.

In an alternative method of flow control a dome-loaded back pressure regulator can also be used to control flow by controlling the pressure drop across an orifice or an adjustable metering valve.

Request a Quote Download Brochure

Reasons to Consider a Back Pressure Regulator for Flow Control

Wide Flow Range

Typical control valves operate in a flow range of 10:1 to 15:1. It is common to use multiple flow control valves in parallel when an application exceeds these flow rate ratios. The Equilibar back pressure regulator can easily be configured to control flow rate through a 100:1 flow rate range.

Isolation from Downstream Pressure Changes

By using a BPR, your flow control scheme is automatically buffered against changes in downstream pressure. A back pressure regulator will automatically adjust to keep its input pressure at setpoint regardless of changes in its output (vent) port. When using a traditional flow control valve, any change in downstream pressure or restriction will require a PID control adjustment. This takes time and may be disruptive to your critical process. By using the BPR, the pressure drop across the metering valve is held steady and quickly responds to disruptions downstream.

High Resolution

Equilibar dome-loaded BPRs have ultra high resolution, zero hysteresis, and zero dead-band. This can be useful where traditional control valve deadband (or “stiction”) do not have adequate precision. Small adjustments may be made to the differential pressure resulting in high resolution pressure control. See details for high resolution flow control application.

Simple flow control without a flow meter

In some applications, the purchase of a flow meter may not be economical or practical, such as with severe service conditions. By controlling the pressure upstream and downstream of an orifice, simple flow control can be achieved with a flow meter. The flow rate of most turbulent fluid systems is highly proportional to the flow rate, raised to the second power. (See orifice calculator)

Demanding service conditions

Equilibar BPRs have only one moving part, and are therefore easily configurable for the following severe and demanding service conditions:


Request a Quote Download Brochure


Open Loop Flow Control

The schematic below shows open loop flow control. This works for controlling the flow of liquids and gases. The upstream pressure reducing regulator (PRR) sets the P1 pressure to the orifice. The back pressure regulator sets the P2 pressure to the orifice. By adjusting P2 with the back pressure regulator the differential pressure is controlled. If the orifice is of a known Cv or has had its flow characterized, the differential pressure across the orifice effectively controls the flow rate. Open loop flow control is demonstrated in the video.

open loop flow control using back pressure regulator

Request a Quote Download Brochure

Improved Valve Turn-Down Ratio

By replacing the fixed orifice in the previous schematic with a modulating variable orifice valve, a much wider range of flow rates may be achieved. Traditionally flow control valves may have a turn down ratio of only 10:1. Turn down is the ratio between the highest flow that can be controlled and the lowest flow that can be controlled. A 10:1 turn down means that is 10scfm is the highest flow when the control valve is wide open then 1 scfm is the lowest flow the control valve will likely be able to set with reasonable accuracy.

Traditionally if a higher turn down ratio was required, say 15:1, a second smaller flow control valve would need to be mounted in parallel. This is quite costly and requires a sophisticated control to allow the two valves to smoothly transition. An alternative approach is to retain the original larger 10:1 flow control valve. When low flow rates are required the differential pressure may be reduced allowing the flow control valve to produce lower flow rates.

using back pressure regulator with control valve extended flow range

Request a Quote Download Brochure

Closed Loop Flow Control

In the schematic below, a pressure reducing regulator is used to provide a stable gas pressure to a metering valve. The Equilibar back pressure regulator has its setpoint adjusted by an electronic pressure regulator (EPR) to control the downstream pressure on the Metering Valve. The flow transmitter is monitored by the PID controller to keep the process at the desired flow set-point. One real advantage of this is the reduced workload on the PID circuit and the increased speed of response in the system. Changes in the downstream system pressure are immediately and automatically compensated for when the back pressure regulator modulates to keep its input pressure (P2) at setpoint.

closed loop flow control using back pressure regulator

Request a Quote Download Brochure

Flow Control Against Pump/Compressor Flow Curve

In the schematic below, the process works in the same manner. However, a pump or compressor can be used to supply a consistent pressure on the upstream of the Metering Valve. This schematic is valid for both process gases and liquids.

Interestingly, it is not necessary that the pump or compressor provide a constant pressure; as the flow rate varies, it is normal for the pump or compressor output pressure to vary. So long as the pressure at any given flow rate is relatively stable, the PID controller is able to provide good control. In fact, for some pumps or compressors, the Metering Valve could be eliminated altogether, with providing flow control by simply adjusting the point on the “pump curve” that the process is operating.

flow control with pump or compressor using back pressure regulator

Learn more about Equilibar back pressure regulators.

Learn how Equilibar back pressure regulators can provide high resolution flow control for applications such as temperature control.

Request a Quote Download Brochure


schematic of how equilibar back pressure regulator works in flow control
Diagram of how an Equilibar valve works for flow control


Graph of flow versus actuation for globe valve and Equilibar valve
Flow through an Equilibar valve (blue) and a globe valve (red) at increasing actuation pressures
Work Categories

Equilibar News

dome loaded regulators in water technology

Equilibar’s Jeff Jennings shares his expertise on dome loaded regulators in Water Technology Magazine

The May/June issue of Water Technology Magazine features a six-page article by Equilibar founder Jeff Jennings that provides an overview of dome loaded regulators. The article compares dome-loaded technology to traditional spring-loaded technology. It also explains the differences between a pressure reducing regulator and a back pressure regulator. “Over the years we’ve learned that there Read More

Read More