Flow Control Schematics using Back Pressure Regulators

Flow Control using Back Pressure Valves

Using Back Pressure Regulators in Flow Control Schemes

  • Equilibar schematic open loop flow control

Traditional flow control schemes use variable orifice valves in conjunction with flow transmitters and a closed-loop PID controller. In an alternative method, a dome-loaded back pressure regulator can be used in flow control schemes.

Read more specifics about How Equilibar back pressure regulators are used for flow control.

 

Why use a Back Pressure Regulator for Flow Control

Wide Flow Range

Flow control valves (FCVs) used in typical flow control schemes have an operating range from 10:1 to 15:1. It is common practice to have multiple FCVs in parallel when an application flow ranges exceed the typical 15:1 ratio. The Equilibar back pressure regulator (BPR) can easily be configured to control flow rate across a very wide flow range.

Isolation from Downstream Pressure Changes

By using an Equilibar BPR, your system is automatically buffered against changes in downstream pressure. A back pressure regulator will automatically adjust to keep its input pressure at setpoint regardless of changes in its output (vent) port. When using a traditional FCVs, any change in downstream pressure or restriction will require a PID control adjustment. This takes time and may be disruptive to your critical process. By using the BPR, the pressure drop across the metering valve is held steady and quickly responds to disruptions downstream.

High Resolution

Equilibar dome-loaded BPRs have ultra high resolution, zero hysteresis, and zero dead-band. This can be useful where traditional control valve deadband (or “stiction”) do not have adequate precision. Small adjustments may be made to the differential pressure resulting in high resolution pressure control. See details for high resolution flow control application.

Simple control without a flow meter

In some applications, the purchase of a flow meter may not be economical or practical, such as with severe service conditions. By maintaining the pressure upstream and downstream of an orifice, simple control can be achieved without a flow meter. The flow rate of most turbulent fluid systems is highly proportional to the flow rate, raised to the second power. (See orifice calculator)

Demanding service conditions

Equilibar BPRs have only one moving part, and are therefore easily configurable for the following severe and demanding service conditions:

Open Loop Flow Control

The schematic below shows open loop flow control. This works for controlling the flow of liquids and gases. The upstream pressure reducing regulator (PRR) sets the P1 pressure to the orifice. The back pressure regulator sets the P2 pressure to the orifice. By adjusting P2 with the back pressure regulator the differential pressure is controlled. If the orifice is of a known Cv or has had its flow characterized, the differential pressure across the orifice effectively controls the flow rate. Open loop flow control is demonstrated in the video.

open loop flow control using back pressure regulator

Request a Quote Download Brochure
 

Improved Valve Turn-Down Ratio

By replacing the fixed orifice in the previous schematic with a modulating variable orifice valve, a much wider range of flow rates may be achieved. Traditionally flow control valves may have a turn down ratio of only 10:1. Turn down is the ratio between the highest flow that can be controlled and the lowest flow that can be controlled. A 10:1 turn down means that is 10scfm is the highest flow when the control valve is wide open then 1 scfm is the lowest flow the control valve will likely be able to set with reasonable accuracy.

Traditionally if a higher turn down ratio was required, say 15:1, a second smaller flow control valve would need to be mounted in parallel. This is quite costly and requires a sophisticated control to allow the two valves to smoothly transition. An alternative approach is to retain the original larger 10:1 flow control valve. When low flow rates are required the differential pressure may be reduced allowing the flow control valve to produce lower flow rates.

using back pressure regulator with control valve extended flow range

Request a Quote Download Brochure
 

Closed Loop Flow Control

In the schematic below, a pressure reducing regulator is used to provide a stable gas pressure to a metering valve. The Equilibar back pressure regulator has its setpoint adjusted by an electronic pressure regulator (EPR) to control the downstream pressure on the Metering Valve. The flow transmitter is monitored by the PID controller to keep the process at the desired flow set-point. One real advantage of this is the reduced workload on the PID circuit and the increased speed of response in the system. Changes in the downstream system pressure are immediately and automatically compensated for when the back pressure regulator modulates to keep its input pressure (P2) at setpoint.

closed loop flow control using back pressure regulator

Request a Quote Download Brochure
 

Flow Control Against Pump/Compressor Flow Curve

In the schematic below, the process works in the same manner. However, a pump or compressor can be used to supply a consistent pressure on the upstream of the Metering Valve. This schematic is valid for both process gases and liquids.

Interestingly, it is not necessary that the pump or compressor provide a constant pressure; as the flow rate varies, it is normal for the pump or compressor output pressure to vary. So long as the pressure at any given flow rate is relatively stable, the PID controller is able to provide good control. In fact, for some pumps or compressors, the Metering Valve could be eliminated altogether, with providing flow control by simply adjusting the point on the “pump curve” that the process is operating.

flow control with pump or compressor using back pressure regulator

Learn more about Equilibar back pressure regulators.

Learn how Equilibar back pressure regulators can provide high resolution flow control for applications such as temperature control.

Request a Quote Download Brochure
GS4 Back Pressure Regulator with QPV pilot

Equilibar GS4 back pressure regulator with QPV pilot regulator can be used for flow control applications.

March 2019 Flow Control Magazine

Equilibar is featured in the March 2019 issue of Flow Control Magazine. Read the article here.

Work Categories

Equilibar News

tokyo biopharma expo flow chemistry continuous manufacturing

Travel spotlight: Japan highlights opportunities in Flow Chemistry, Continuous Manufacturing, API

Earlier this summer, Equilibar engineers Ryan Heffner and Alan Black spent a productive week in Tokyo working with several of our Japanese customers and attending Biopharma Expo, a large pharmaceutical trade show. According to the U.S. Department of Commerce, Japan is one of the largest pharmaceutical markets in the world and it is continuing to Read More

Read More